
rainer@timecockpit.com

http://www.timecockpit.com

@rstropek

Mail

Web

Twitter WinRT

Rainer Stropek
software architects gmbh

The Start Of A New Era

Programming Windows 8 With WinRT

Saves the day.

Windows reimagined

What's WinRT?

Windows Runtime (WinRT) is the

basic technology that enables

Windows 8.

What is WinRT from a developer's

standpoint?

Is it really revolutionary new?

What has changed? Why was

change necessary?

This session will be a technical

deep dive into WinRT. It will not

be a design or marketing

session for Windows 8.

Metro-Design, Fast And Fluid, Touch, etc.

Agenda

The World Before .NET…

Before .NET…

… every language had it's own

compiler/interpreter, runtime

environment, libraries, etc.

This caused a lot of problems:

 Expensive to implement.

 How can they work together?

 How can one benefit from

innovation happening in

another island?

And many, many more.
…consisted of a lot of islands

The Early Days…

Compiler Compiler/Interpreter Compiler/Interpreter

COM

COM…

… introduced a binary interface

for interoperable components.

This opened a whole new world

on the Windows platform:

 Cross-language component

libraries.

 Rich application integration

became possible – can you

remember OLE?

 Even richer component

technologies appeared – can

you remember COM+, DCOM,

or VBA? Component Object Model

The Early Days…

Compiler Compiler/Interpreter Compiler/Interpreter

Problems
What Was Wrong With COM?

 Some design flaws
Can you remember the "DLL Hell"?

Not really ready for the upcoming internet.

 COM was no native part of the programming languages
Inside a component you could use all language features.

You had to write separate COM wrapper (e.g. map your types to COM's type system).

Etc.

Problems
And Finally…

 There was this new language "Java"
More productive and robust than e.g. C++.

Built for a component-oriented world from day one.

Platform independent.

The next big thing?

.NET = CLR + Library

The .NET Revolution

Let's introduce a common

language runtime with a class

library and a language that can

compete with Java.

 Building languages will be

easier.

 Strong cross-language

interoperability.

 Many languages benefit from

the world-class, internet-ready

class library.

 Make the CLR a standard and

become platform independent. Common Language Runtime + .NET Framework Class Library

.NET Appears…

Compiler

Still important,
someone has to build

all this

.NET – A Big Success!
 Today dozens of languages are based on CLR

We even have a DLR for dynamic languages like Python, Ruby and JavaScript.

 In various products (hosts) and on multiple platforms
CLR and C# are standards, somewhat platform independent (e.g. Mono, Silverlight).

 .NET Framework Class Library
One of the most complete frameworks on the market today.

Big success factor for the .NET platform.

.NET For Everybody!
Well…

 Huge C++ Codebase
PInvoke and COM Interop are ok but definitively no perfect solution.

 Unmanaged code is important in some cases
Games, compute-intensive calculations, etc.

 …and than there is the browser
JavaScript rules the web.

C++ And JavaScript

Limits Of .NET?

 .NET Library often just a thin

wrapper around OS services.

 (Unmanaged) C++ is still very

important, cannot benefit from

.NET Class Library (e.g. XAML).

 JavaScript has become popular;

de-facto standard for platform

independence.

 .NET Class Library needs some

redesign.

WinRT is for the new world of

touch, tablets, and language

interoperability.

C++ is still strong and JavaScript is the new big player

10 Year After The Rise Of .NET…

PInvoke

Platform Invoke.

Import functions from

unmanaged libraries in .NET.

See MSDN for details.

Access Native Code From .NET

[DllImport("avicap32.dll",
EntryPoint="capCreateCaptureWindow")]

static extern int capCreateCaptureWindow(

 string lpszWindowName, int dwStyle,

 int X, int Y, int nWidth, int nHeight,

 int hwndParent, int nID);

[DllImport("avicap32.dll")]

static extern bool capGetDriverDescription(

 int wDriverIndex,

 [MarshalAs(UnmanagedType.LPTStr)] ref string lpszName,

 int cbName,

 [MarshalAs(UnmanagedType.LPTStr)] ref string lpszVer,

 int cbVer);

http://msdn.microsoft.com/en-us/library/w4byd5y4(v=vs.110).aspx

COM Interop

Access COM objects from .NET

Simplified in latest versions of

.NET, still it does not feel

"natural" to .NET developers.

See MSDN for details.

Access Native Code From .NET

//000013: var x = new XmlDocument();
 IL_0001: newobj

 instance void [System.Xml]System.Xml.XmlDocument::.ctor()

//000014: var y = new MyComObjectLib.MyClass();
 IL_0007: ldstr "F61ED984-6153-486D-8392-303545E63C2D"

 IL_000c: newobj instance void [mscorlib]System.Guid::.ctor(string)

 IL_0011: call class [mscorlib]System.Type

 [mscorlib]System.Type::GetTypeFromCLSID(valuetype [mscorlib]System.Guid)

 IL_0016: call object [mscorlib]System.Activator::CreateInstance([...])

 IL_001b: castclass MyComObjectLib.MyClass

http://msdn.microsoft.com/en-us/library/6bw51z5z(v=vs.110).aspx

From .NET To WinRT
 Combine what's great in COM and .NET

Binary interface for language interoperability.

Metadata management of .NET.

 "New COM" as a natural part of all languages/platforms
.NET, C++, and JavaScript; maybe others will join the party, too.

 Build a new class library on the new runtime
Cleanup the library compared to .NET (e.g. async rules, dependencies, etc.)

 Do not enforce managed code

WinRT

WinRT is…

… underlying infrastructure of

metro-style apps in Windows 8.

 Binary interface for

interoperability (based on

COM).

 Language projection layer for

.NET languages, C++ and

JavaScript.

 Class library targeted at

development of metro-style

apps.
Windows Runtime – The Common Runtime Of Windows 8

The Windows 8 Platform

WinRT

WinRT is…

 secure runtime environment

which is the basis for the

upcoming Windows Store.

And a lot of other things that we

cannot cover here because of the

limited time.

Windows Runtime – The Common Runtime Of Windows 8

The Windows 8 Platform

Language Projection Layer

Projection Means…

… you can stick to naming

conventions you are used to

(e.g. camelCasing in JavaScript,

PascalCasing in C#).

… you can write WinRT

components and your compiler

will generate the necessary

infrastructure (e.g. interfaces)

… ref counting is automatically

done behind the scenes.

Because WinRT should feel "natural" to you.

The Windows 8 Platform

Language Projection Layer

Projection Means…

… COM's interface-based logic is

translated into namespaces and

classes in the OO world.

Because WinRT should feel "natural" to you.

The Windows 8 Platform

C++/CX

Extends the C++ syntax to make it

easier to consume and write

WinRT components.

In this sample RoutedEventArgs

and MessageDialog are no

C++ classes, they are WinRT

(=COM) objects.

Quite similar to C#, isn't it?

Language Projection Layer

// Note that all parameters are passed as "hat pointers" (^). Hat

// pointers are pointers to WinRT objects. The pointer is

// automatically reference counted (COM’s IUnknown.AddRef and

// IUnknown.Release methods).

void OnShowMsgBoxWithCx(

 Object ^sender, Windows::UI::Xaml::RoutedEventArgs ^eventArgs)

{

 // Note that we create the new instance of the WinRT component

 // "MessageDialog" using "ref new" instead of new. This is

 // necessary to retrieve a handle to the instance and let

 // WinRT do the reference counting.

 auto msgBox = ref new Windows::UI::Popups::MessageDialog(

 "Hello World!");

 msgBox->ShowAsync();

}

C++/CX

Extends the C++ syntax to make it

easier to consume and write

WinRT components.

In this sample RoutedEventArgs

and MessageDialog are no

C++ classes, they are WinRT

(=COM) objects.

Language Projection Layer

namespace MyApplication

{

 // Note that this class is defined as a ref class.

 // It becomes a WinRT component.

 public ref class BlankPage sealed

 {

 public:

 BlankPage();

 protected:

 virtual void OnNavigatedTo(

 NavigationEventArgs^ e) override;

 private:

 void OnShowMsgBoxWithCx(

 Object ^sender, RoutedEventArgs ^eventArgs)

 { … }

 }

}

C++, WRL

It is possible to consume and

write WinRT components in

plain C++.

You can even do it without any

library support (not

recommended).

If you need to use plain C++

instead of C++/CX use the

Windows Runtime Library

(WRL).

These two lines of C++/CX code

become…

Language Projection Layer

Windows::UI::Popups::MessageDialog msgBox(

 "Hello World!");

msgBox.ShowAsync();

C++, WRL

… many lines of code in plain C++

with WRL.

However, this example shows us

that at the very bottom WinRT…

 is based on COM.

 is exception-free (exceptions

are introduced by the language

projection layer).

 has it's own type system.

 etc.

Language Projection Layer

void BlankPage::OnShowMsgBoxWrl(

 Object ^sender, Windows::UI::Xaml::RoutedEventArgs ^eventArgs) {

 const wchar_t *msgBoxClassName = L"Windows.UI.Popups.MessageDialog";

 const wchar_t *helloWorldMessage = L"Hello World!";

 HSTRING hString, hWelcomeString;

 auto hr = ::WindowsCreateString(msgBoxClassName,

 static_cast<UINT32>(::wcslen(msgBoxClassName)), &hString);

 if (SUCCEEDED(hr)) {

 Microsoft::WRL::ComPtr<ABI::Windows::UI::Popups::IMessageDialogFactory>

 factory;

 hr = Windows::Foundation::GetActivationFactory(hString, &factory);

 if (SUCCEEDED(hr)) {

 hr = ::WindowsCreateString(helloWorldMessage,

 static_cast<UINT32>(::wcslen(helloWorldMessage)), &hWelcomeString);

 if (SUCCEEDED(hr)) {

 Microsoft::WRL::ComPtr<ABI::Windows::UI::Popups::IMessageDialog> dialog;

 hr = factory->Create(hWelcomeString, &dialog);

 if(SUCCEEDED(hr)) {

 Microsoft::WRL::ComPtr<

 __FIAsyncOperation_1_Windows__CUI__CPopups__CIUICommand> command;

 hr = dialog->ShowAsync(&command);

 }

 ::WindowsDeleteString(hWelcomeString);

 }

 }

 ::WindowsDeleteString(hString);

 }

}

WinRT And .NET

C# and VB can consume WinRT

components as if they were

native .NET classes.

Even IL knows about the WinRT. It

is deeply integrated into the

.NET platform.

Language Projection Layer

.assembly extern System.Runtime {

 .publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A)

 .ver 4:0:0:0

}

.assembly extern windowsruntime Windows {

 .ver 255:255:255:255

}

[...]

//000008: var x = new Windows.Data.Xml.Dom.XmlDocument();

 IL_0001: newobj instance void

 [Windows]Windows.Data.Xml.Dom.XmlDocument::.ctor()

COM Component In C#/VS 2010

WinRT And .NET

While writing a COM component

in C#/VS 2010 was complex and

a lot of work…

A Lot Of Manual Coding…

Language Projection Layer

WinRT Component In VS11

WinRT And .NET

… it is easy with the next version

of C# and VS.

If you follow some basic rules the

compiler will generate the

necessary infrastructure for you.

For details see MSDN.

Very Simple With Some Limitations You Have To Follow

Language Projection Layer

http://channel9.msdn.com/Events/BUILD/BUILD2011/TOOL-930C

Language Interop From C# To JavaScript Via WinRT
Note The Automatic Changes Of Casing…

Language Projection Layer

So What?
If You Are A .NET Developer…

 You may ask yourself why you need something new
Why didn't the other guys simply join your .NET platform?

 You will continue to use the CLR.
It is your bridge to seamless integration with WinRT.

 Access OS services directly using WinRT
No wrappers around Windows API any more.

The parts of the .NET class library you will use will shrink.

So What?
If You Are A C++ Developer…

 Welcome to the world of XAML!
You do not need to be jealous any more because the .NET guys have WPF ;-)

Freely combine e.g. Direct3D with XAML-based UI parts.

 You can easily program WinRT with C++/CX
If you want/need to you can stick to ISO C++ by using WRL.

 Language interop with .NET and JavaScript
Share components with .NET and JavaScript developers.

So What?
If You Are A JavaScript Developer…

 Use your existing skillset to write apps for Windows
You can enter the upcoming Windows Store.

 Visit my next session about WinRT and JavaScript

rainer@timecockpit.com

http://www.timecockpit.com

@rstropek

Mail

Web

Twitter Q&A

Rainer Stropek
software architects gmbh

Thank You For Coming.

Programming Windows 8 With WinRT

Saves the day.

